
Michael Kaiser
Assignment 1

Comp 510
Fall 2012

(2nd edition: 15.2-1):  Matrix Chain Multiplication.
Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is: 
(5, 10, 3, 12, 5, 50, 6).

From the book, we have the algorithm MATRIX-CHAIN-ORDER(p), which will be used to 
solve this problem. 

We have:
p0 = 5
p1 = 10
p2 = 3
p3 = 12
p4 = 5
p5 = 50
p6 = 6

The corresponding matricies are:
A1 – 5x10
A2 – 10x3
A3 – 3x12
A4 – 12x5
A5 – 5x50
A6 – 50x6

From the algorithm, we have, for all x, m[x,x] = 0.

m[1,2] = m[1,1] + m[2,2] + p0 * p1 * p2
m[1,2] = 0 + 150
m[1,2] = 150

m[3,4] = m[3,3] + m[4,4] + p2 * p3 * p4
m[3,4] = 0 + 180
m[3,4] = 180

m[4,5] = m[4,4] + m[5,5] + p3 * p4 * p5
m[4,5] = 0 + 3000
m[4,5] = 3000

m[5,6] = m[5,5] + m[6,6] + p4 * p5 * p6
m[5,6] = 0 + 1500
m[5,6] = 1500

m[1,3] = min of { m[1,1] + m[2,3] + p0 * p1 * p3 = 750 }
{ m[1,2] + m[3,3] + p0 * p2 * p3 = 330 }

m[2,4] = min of { m[2,2] + m[3,4] + p1 * p2 * p4 = 330}
{ m[2,3] + m[4,4] + p1 * p3 * p4 = 960}



m[3,5] = min of { m[3,3] + m[4,5] + p2 * p3 * p5 = 4800}
{ m[3,4] + m[5,5] + p2 * p4 * p5 = 930 }

m[4,6] = min of { m[4,4] + m[5,6] + p3 * p4 * p6 = 1860 }
{ m[4,5] + m[6,6] + p3 * p5 * p6 = 6600 }

m[1,4] = min of { m[1,1] + m[2,4] + p0 * p1 * p4 = 580 }
{ m[1,2] + m[3,4] + p0 * p2 * p4 = 405 }
{ m[1,3] + m[4,4] + p0 * p3 * p4 = 630 }

m[2,5] = min of { m[2,2] + m[3,5] + p1 * p2 * p5 = 2430 }
{ m[2,3] + m[4,5] + p1 * p3 * p5 = 9360 }
{ m[2,4] + m[5,5] + p1 * p4 * p5 = 2830 }

m[3,6] = min of { m[3,3] + m[4,6] + p2 * p3 * p6 = 2076 }
{ m[3,4] + m[5,6] + p2 * p4 * p6 = 1770 }
{ m[3,5] + m[6,6] + p2 * p5 * p6 = 1830 }

m[1,5] = { m[1,1] + m[2,5] + p0 * p1 * p5 = 4930 }
{ m[1,2] + m[3,5] + p0 * p2 * p5 = 1830 }
{ m[1,3] + m[1,4] + p0 * p3 * p5 = 6330 }
{ m[1,4] + m[1,5] + p0 * p4 * p5 = 1655 }

m[2,6] = { m[2,2] + m[3,6] + p1 * p2 * p6 = 1950 }
{ m[2,3] + m[4,6] + p1 * p3 * p6 = 2940 }
{ m[2,4] + m[5,6] + p1 * p4 * p6 = 2130 }
{ m[2,5] + m[6,6] + p1 * p5 * p6 = 5430 }

m[1,6] = { m[1,1] + m[2,6] + p0 * p1 * p6 = 2250 }
{ m[1,2] + m[3,6] + p0 * p2 * p6 = 2010 }
{ m[1,3] + m[4,6] + p0 * p3 * p6 = 2550 }
{ m[1,4] + m[5,6] + p0 * p4 * p6 = 2055 }
{ m[1,5] + m[6,6] + p0 * p5 * p6 = 3155 }

M 1 2 3 4 5 6
6 2010 1950 1770 1840 1500 0
5 1655 2430 930 3000 0
4 405 330 180 0
3 330 360
2 150
1 0

And using this, we construct the S table:

S 1 2 3 4 5
6 2 2 4 4 5
5 4 2 4 4
4 2 2 3
3 2 2
2 1



The minimum cost is therefore 2010 and the optimal parenthesization is:
 ((A1 * A2) * (A3 * A4) * (A5 * A6))

(2nd edition: 15.2-2) :  Matrix Chain Multiplication.

Give a recursive algorithm MATRIX-CHAIN-MULTIPLY(A,s,i,j) that actually performs the 
optimal matrix-chain multiplication, given the sequence of matrices (A1, A2, ..., An), the s 
table computed by MATRIX-CHAIN-ORDER, and the indices i and j. (The initial call would 
be MATRIX-CHAIN-MULTIPLY(A, s, 1, n).

The Algorithm should look at follows:

MATRIX-CHAIN-MULTIPLY(A, s, i, j)
{

if ( i >= j)
{

return A[i];
}
else
{

return MATRIX-MULTIPLY(MATRIX-CHAIN-MULTIPLY(A, s, i, s[i][j]), 
    MATRIX-CHAIN-MULTIPLY(A, s, s[i][j] + 1, j);

}
}

(2nd edition: 15-1): The Bitonic Euclidean Traveling-Salesman Problem.

Describe an O(n2)-time algorithm for determining the optimal bitonic tour. You may assume 
that no two points have the same x-coordinate.  Hint: scan left to right, maintaining optimal 
possibilities for the two parts of the tour.

Sort the points from left to right such that we have points {p1,p2, ... pn} in order from left to right.

We can define pij with i < j such that pij is the shortest bitonic path from p1 -> pi -> pj, which 
includes all points from p1 to pj. We can then define b[i,j] to be the length of the shortest bitonic 
path Pij.

The following rules define the dynamic programming solution:

b[1,j] = Sum from i = 1 to j – 1 of the Euclidean Distance of (i, i+1).
b[i,j] = b[i, j-1] + Euclidean Distance of (j, j-1), given that i < j – 1.
b[j-1, j] = min of each i < j - 1( b[i, j – 1] + Euclidean distance of (i,j) 
b[n,n] = b[n – 1, n] + Eucldiean distance of (n-1, n).

The running time of this algorithm is O(n2) as n of the lower diagonal entries require O(n) time to 
compute, with the remaining entries requiring O(1) time. Thus we have n * O(n) = O(n2).



(2nd edition: 15-2): Printing Neatly. Give a dynamic programming algorithm to print a 
paragraph of n words neatly on a printer. Analyze the run time and space requirements for 
your algorithm.

Several defintions for the algorithm:

extras[i,j] = M – j + i – sum from k = i to j of lk : this is to be the number of extra spaces at the end 
of a line containing the words i through j.

{∞ if extras[i,j] < 0 (words dont fit) }
lc[i,j] = {0 if j = n and extras[i,j] >= 0 (last line has no cost) }

{(extras[i,j])3 otherwise (words fit) }

c[j] will be the cost of an optimal arrangement of words [1,...j].
c[j] = c[i-1] + lc[i,j]
c[0] = 0 as a base case so that c[1] = lc[1,1].

The rules for c[j] are therefore

c[j] = { 0 if (j = 0) }
{ min of all i, 1 <= i < j of (c[i-1] + lc[i,j]) if (j > 0) }

And lastly, we have p as a parallel table that points to where each c value orginated so that we can 
linebreak in the correct location. When c[j] is computed, if c[j] is based on c[k – 1], p[j] is set to k.

Thus the algorithm to create the tables for printing is:
PRINT-NEATLY(l, n, M)
{

for i = 1 to n
{

extras[i,i] = M – li;
for j = (i + 1) to n
{

extras[i,j] = extras[i, j – 1] – lj – 1; //See definition of extras
}

}
for i = 1 to n
{

for j = i to n
{

if extras[i,j] < 0 //Words don't fit
{

lc[i,j] = ∞;
}
else if (j == n) && (extras[i,j] >= 0)
{

lc[i,j] = 0;
}
else
{

lc[i,j] = (extras[i,j])3

}



}
}
c[0] = 0;
for j = 1 to n
{

c[j] =  ∞;
for i = 1 to j
{

if (c[i-1] + lc[i,j] < c[j])
{

c[j] = c[i-1] + lc[i,j];
p[j] = i;

}
}

}
return (c and p)

}

Then to print the words, we have the following routine:

PRINT-WORDS(p, j)
{

i = p[j]
if (i == 1)
{

k = 1;
}
else
{

k = PRINT-WORDS(p, i-1) + 1;
}
print(k, i, j);
return k;

}

The algorithm's time and space are O(n2), with the ability be improved, however I'm leaving it as 
O(n2) to follow the instructions. Each of the loops are at most nested once, so the greatest power of 
n is n2, giving us O(n2). Space requirements of are also O(n2) because extras is extras[n,n], lc is 
lc[n,n] and c is c[n]. The amount of space is precisely 2n2 + n, which is O(n2).

References
Class Textbook and solution manual (3rd ED)
http://en.wikipedia.org/wiki/Matrix_chain_multiplication
http://en.wikipedia.org/wiki/Bitonic_tour
http://mitpress.mit.edu/algorithms/solutions/chap15-solutions.pdf
http://www.google.com/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&ved=0CD4QFjAE&url=http%3A%2F
%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.135.5959%26rep
%3Drep1%26type
%3Dpdf&ei=qm9NUOCqIueUiQLyyYDADQ&usg=AFQjCNH9IgkwabuBn6bgXpQ1yjaxLIVg8g


