(2nd edition: 15.2-1): Matrix Chain Multiplication.

Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is: (5, 10, 3, 12, 5, 50, 6).

From the book, we have the algorithm MATRIX-CHAIN-ORDER(p), which will be used to solve this problem.

We have:
$\mathrm{p} 0=5$
$\mathrm{p} 1=10$
$\mathrm{p} 2=3$
$\mathrm{p} 3=12$
$\mathrm{p} 4=5$
$\mathrm{p} 5=50$
p6 $=6$
The corresponding matricies are:
A1 - 5×10
A2 - 10×3
A3-3x12
A $4-12 \times 5$
A5 - 5×50
A6 - 50x6
From the algorithm, we have, for all $\mathrm{x}, \mathrm{m}[\mathrm{x}, \mathrm{x}]=0$.

$$
\begin{aligned}
& \mathrm{m}[1,2]=\mathrm{m}[1,1]+\mathrm{m}[2,2]+\mathrm{p} 0 * \mathrm{p} 1 * \mathrm{p} 2 \\
& \mathrm{~m}[1,2]=0+150 \\
& \mathrm{~m}[1,2]=150 \\
& \mathrm{~m}[3,4]=\mathrm{m}[3,3]+\mathrm{m}[4,4]+\mathrm{p} 2 * \mathrm{p} 3 * \mathrm{p} 4 \\
& \mathrm{~m}[3,4]=0+180 \\
& \mathrm{~m}[3,4]=180 \\
& \mathrm{~m}[4,5]=\mathrm{m}[4,4]+\mathrm{m}[5,5]+\mathrm{p} 3 * \mathrm{p} 4 * \mathrm{p} 5 \\
& \mathrm{~m}[4,5]=0+3000 \\
& \mathrm{~m}[4,5]=3000 \\
& \mathrm{~m}[5,6]=\mathrm{m}[5,5]+\mathrm{m}[6,6]+\mathrm{p} 4 * \mathrm{p} 5 * \mathrm{p} 6 \\
& m[5,6]=0+1500 \\
& \mathrm{~m}[5,6]=1500 \\
& \mathrm{~m}[1,3]=\min \text { of } \quad\{\mathrm{m}[1,1]+\mathrm{m}[2,3]+\mathrm{p} 0 * \mathrm{p} 1 * \mathrm{p} 3=750\} \\
& \{\mathbf{m}[1,2]+m[3,3]+p 0 * p 2 * p 3=330\} \\
& m[2,4]=\min \text { of } \quad\{\mathbf{m}[\mathbf{2 , 2}]+\mathbf{m}[\mathbf{3}, \mathbf{4}]+\mathbf{p} \mathbf{1} * \mathbf{p} \mathbf{2} * \mathbf{p} \mathbf{4}=\mathbf{3 3 0}\} \\
& \{\mathrm{m}[2,3]+\mathrm{m}[4,4]+\mathrm{p} 1 * \mathrm{p} 3 * \mathrm{p} 4=960\}
\end{aligned}
$$

$\mathrm{m}[3,5]=\mathrm{min}$ of	$\begin{aligned} & \{\mathrm{m}[3,3]+\mathrm{m}[4,5]+\mathrm{p} 2 * \mathrm{p} 3 * \mathrm{p} 5=4800\} \\ & \{\mathbf{m}[\mathbf{3}, \mathbf{4}]+\mathbf{m}[\mathbf{5}, 5]+\mathbf{p} \mathbf{2} * \mathbf{p} \mathbf{2} * \mathbf{p} \mathbf{5}=\mathbf{9 3 0}\} \end{aligned}$
$\mathrm{m}[4,6]=\min$ of	$\{\mathrm{m}[4,4]+\mathrm{m}[5,6]+\mathrm{p} 3 * \mathbf{p} 4 * \mathrm{p} 6=1860\}$
	$\{\mathrm{m}[4,5]+\mathrm{m}[6,6]+\mathrm{p} 3 * \mathrm{p} 5 * \mathrm{p} 6=6600\}$
$\mathrm{m}[1,4]=\mathrm{min}$ of	$\{\mathrm{m}[1,1]+\mathrm{m}[2,4]+\mathrm{p} 0 * \mathrm{p} 1 * \mathrm{p} 4=580\}$
	$\{\mathrm{m}[1,2]+\mathrm{m}[3,4]+\mathrm{p} 0 * p 2 * p 4=405\}$
	$\{\mathrm{m}[1,3]+\mathrm{m}[4,4]+\mathrm{p} 0 * \mathrm{p} 3 * \mathrm{p} 4=630\}$
$\mathrm{m}[2,5]=\mathrm{min}$ of	$\{\mathrm{m}[2,2]+\mathrm{m}[\mathbf{3 , 5]}+\mathrm{p} 1 * \mathbf{p} 2 * \mathrm{p} 5=\mathbf{2 4 3 0}\}$
	$\{\mathrm{m}[2,3]+\mathrm{m}[4,5]+\mathrm{p} 1 * \mathrm{p} 3 * \mathrm{p} 5=9360\}$
	$\{\mathrm{m}[2,4]+\mathrm{m}[5,5]+\mathrm{p} 1 * \mathrm{p} 4 * \mathrm{p} 5=2830\}$
$m[3,6]=\min$ of	$\{\mathrm{m}[3,3]+\mathrm{m}[4,6]+\mathrm{p} 2 * \mathrm{p} 3 * \mathrm{p} 6=2076\}$
	\{ m[3,4] + m[5,6] + $\mathbf{2} 2 * \mathbf{p} 4 * \mathbf{p 6}=1770\}$
	$\{\mathrm{m}[3,5]+\mathrm{m}[6,6]+\mathrm{p} 2 * \mathrm{p} 5 * \mathrm{p} 6=1830\}$
$\mathrm{m}[1,5]=$	$\{\mathrm{m}[1,1]+\mathrm{m}[2,5]+\mathrm{p} 0 * \mathrm{p} 1 * \mathrm{p} 5=4930\}$
	$\{\mathrm{m}[1,2]+\mathrm{m}[3,5]+\mathrm{p} 0 * \mathrm{p} 2 * \mathrm{p} 5=1830\}$
	$\{\mathrm{m}[1,3]+\mathrm{m}[1,4]+\mathrm{p} 0 * \mathrm{p} 3 * \mathrm{p} 5=6330\}$
	$\{\mathrm{m}[1,4]+\mathrm{m}[1,5]+\mathrm{p} 0 * p 4 * p 5=1655\}$
$\mathrm{m}[2,6]=$	$\{\mathrm{m}[2,2]+\mathrm{m}[3,6]+\mathrm{p} 1 * \mathrm{p} 2 * \mathrm{p} 6=1950\}$
	$\{\mathrm{m}[2,3]+\mathrm{m}[4,6]+\mathrm{p} 1 * \mathrm{p} 3 * \mathrm{p} 6=2940\}$
	$\{\mathrm{m}[2,4]+\mathrm{m}[5,6]+\mathrm{p} 1 * \mathrm{p} 4 * \mathrm{p} 6=2130\}$
	$\{\mathrm{m}[2,5]+\mathrm{m}[6,6]+\mathrm{p} 1 * \mathrm{p} 5 * \mathrm{p} 6=5430\}$
$\mathrm{m}[1,6]=$	$\{\mathrm{m}[1,1]+\mathrm{m}[2,6]+\mathrm{p} 0 * \mathrm{p} 1 * \mathrm{p} 6=2250\}$
	\{ m[1,2] + m[3,6] + p0 * $\mathbf{p} 2$ * $\mathrm{p} 6=2010\}$
	$\{\mathrm{m}[1,3]+\mathrm{m}[4,6]+\mathrm{p} 0 * \mathrm{p} 3 * \mathrm{p} 6=2550\}$
	$\{\mathrm{m}[1,4]+\mathrm{m}[5,6]+\mathrm{p} 0 * \mathrm{p} 4 * \mathrm{p} 6=2055\}$
	$\{\mathrm{m}[1,5]+\mathrm{m}[6,6]+\mathrm{p} 0 * \mathrm{p} 5 * \mathrm{p} 6=3155\}$

M	1	2	3	4	5	6
6	2010	1950	1770	1840	1500	0
5	1655	2430	930	3000	0	
4	405	330	180	0		
3	330	360				
2	150					
1	0					

And using this, we construct the S table:

S	1	2	3	4	5
6	2	2	4	4	5
5	4	2	4	4	
4	2	2	3		
3	2	2			
2	1				

The minimum cost is therefore 2010 and the optimal parenthesization is:

```
((A1 * A2) * (A3 * A4) * (A5 * A6))
```


(2nd edition: 15.2-2) : Matrix Chain Multiplication.

Give a recursive algorithm MATRIX-CHAIN-MULTIPLY(A,s,i,j) that actually performs the optimal matrix-chain multiplication, given the sequence of matrices (A1, A2, .., An), the s table computed by MATRIX-CHAIN-ORDER, and the indices i and j. (The initial call would be MATRIX-CHAIN-MULTIPLY(A, $\mathbf{s}, \mathbf{1 , ~ n}$).

The Algorithm should look at follows:

```
MATRIX-CHAIN-MULTIPLY(A, s, i, j)
{
    if (i>= j)
    {
        return A[i];
    }
    else
    {
        return MATRIX-MULTIPLY(MATRIX-CHAIN-MULTIPLY(A, s, i, s[i][j]),
        MATRIX-CHAIN-MULTIPLY(A, s, s[i][j] + 1, j);
    }
}
```


(2nd edition: 15-1): The Bitonic Euclidean Traveling-Salesman Problem.

Describe an O(n2)-time algorithm for determining the optimal bitonic tour. You may assume that no two points have the same x-coordinate. Hint: scan left to right, maintaining optimal possibilities for the two parts of the tour.

Sort the points from left to right such that we have points $\left\{p_{1}, p_{2}, \ldots p_{n}\right\}$ in order from left to right.
We can define $p_{i j}$ with $i<j$ such that $p_{i j}$ is the shortest bitonic path from $p_{1}->p_{i}->p_{j}$, which includes all points from p_{1} to p_{j}. We can then define $b[i, j]$ to be the length of the shortest bitonic path P_{ij}.

The following rules define the dynamic programming solution:
$b[1, j]=$ Sum from $\mathrm{i}=1$ to $\mathrm{j}-1$ of the Euclidean Distance of $(\mathrm{i}, \mathrm{i}+1)$.
$\mathrm{b}[\mathrm{i}, \mathrm{j}]=\mathrm{b}[\mathrm{i}, \mathrm{j}-1]+$ Euclidean Distance of $(\mathrm{j}, \mathrm{j}-1)$, given that $\mathrm{i}<\mathrm{j}-1$.
$b[j-1, j]=\min$ of each $\mathrm{i}<\mathrm{j}-1(\mathrm{~b}[\mathrm{i}, \mathrm{j}-1]+$ Euclidean distance of (i, j)
$\mathrm{b}[\mathrm{n}, \mathrm{n}]=\mathrm{b}[\mathrm{n}-1, \mathrm{n}]+$ Eucldiean distance of $(\mathrm{n}-1, \mathrm{n})$.
The running time of this algorithm is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ as n of the lower diagonal entries require $\mathrm{O}(\mathrm{n})$ time to compute, with the remaining entries requiring $O(1)$ time. Thus we have $n * O(n)=O\left(n^{2}\right)$.
(2nd edition: 15-2): Printing Neatly. Give a dynamic programming algorithm to print a paragraph of \mathbf{n} words neatly on a printer. Analyze the run time and space requirements for your algorithm.

Several defintions for the algorithm:
$\operatorname{extras}[i, j]=M-j+i-\operatorname{sum}$ from $k=i$ to j of l_{k} : this is to be the number of extra spaces at the end of a line containing the words i through j.
$\mathrm{lc}[\mathrm{i}, \mathrm{j}]=\left\{\begin{array}{lll}\{\infty & \text { if extras }[\mathrm{i}, \mathrm{j}]<0 & \text { (words dont fit) } \\ \{0 & \text { if } \mathrm{j}=\mathrm{n} \text { and } \operatorname{extras}[\mathrm{i}, \mathrm{j}]>=0 & \text { (last line has no cost) } \\ \left\{(\operatorname{extras}[\mathrm{i}, \mathrm{j}])^{3}\right. & \text { otherwise }\end{array}\right\}$
$\mathrm{c}[\mathrm{j}]$ will be the cost of an optimal arrangement of words $[1, \ldots . \mathrm{j}]$.
$\mathrm{c}[\mathrm{j}]=\mathrm{c}[\mathrm{i}-1]+\mathrm{lc}[\mathrm{i}, \mathrm{j}]$
$\mathrm{c}[0]=0$ as a base case so that $\mathrm{c}[1]=1 \mathrm{c}[1,1]$.
The rules for $\mathrm{c}[\mathrm{j}]$ are therefore
$c[j]=\{0$

$$
\text { if }(j=0)\}
$$

$\{$ min of all $\mathrm{i}, 1<=\mathrm{i}<\mathrm{j}$ of $(\mathrm{c}[\mathrm{i}-1]+\mathrm{lc}[\mathrm{i}, \mathrm{j}])$
if $(\mathrm{j}>0)\}$

And lastly, we have p as a parallel table that points to where each c value orginated so that we can linebreak in the correct location. When $\mathrm{c}[\mathrm{j}]$ is computed, if $\mathrm{c}[\mathrm{j}]$ is based on $\mathrm{c}[\mathrm{k}-1], \mathrm{p}[\mathrm{j}]$ is set to k .

Thus the algorithm to create the tables for printing is:
PRINT-NEATLY(1, n, M)
\{

```
for i=1 to n
{
    extras[i,i]=M - li;
    for j=(i+1) to n
    {
        extras[i,j]= extras[i,j-1]-1 l - 1; //See definition of extras
    }
}
for i=1 to n
{
    for j = i to n
    {
                if extras[i,j]<0 //Words don't fit
                {
            lc[i,j] = m;
                }
                else if (j == n) && (extras[i,j] >= 0)
                {
            lc[i,j] = 0;
                }
                else
                {
            lc[i,j] = (extras[i,j])}\mp@subsup{)}{}{3
        }
```

```
    }
}
c[0] = 0;
for j=1 to n
{
    c[j] = \infty;
    for i=1 to j
    {
        if(c[i-1] + lc[i,j] < c[j])
        {
                        c[j] = c[i-1] + lc[i,j];
                p[j] = i;
        }
    }
}
return (c and p)
}
```

Then to print the words, we have the following routine:

```
PRINT-WORDS(p,j)
{
    i=p[j]
    if (i== 1)
    {
        k=1;
    }
    else
    {
    k= PRINT-WORDS(p, i-1) + 1;
    }
    print(k, i, j);
    return k;
}
```

The algorithm's time and space are $\mathrm{O}\left(\mathrm{n}^{2}\right)$, with the ability be improved, however I'm leaving it as $\mathrm{O}\left(\mathrm{n}^{2}\right)$ to follow the instructions. Each of the loops are at most nested once, so the greatest power of n is n^{2}, giving us $O\left(n^{2}\right)$. Space requirements of are also $O\left(n^{2}\right)$ because extras is extras $[n, n]$, lc is $\mathrm{lc}[\mathrm{n}, \mathrm{n}]$ and c is $\mathrm{c}[\mathrm{n}]$. The amount of space is precisely $2 \mathrm{n}^{2}+\mathrm{n}$, which is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

References

Class Textbook and solution manual (3rd ED)
http://en.wikipedia.org/wiki/Matrix_chain_multiplication
http://en.wikipedia.org/wiki/Bitonic_tour
http://mitpress.mit.edu/algorithms/solutions/chap15-solutions.pdf
http://www.google.com/url?
$\mathrm{sa}=\mathrm{t} \mathrm{\& rct=j} \mathrm{\& q=} \mathrm{\& esrc=}=\mathrm{s} \& s o u r c e=w e b \& c d=5 \& c a d=r j a \& v e d=0 \mathrm{CD} 4 \mathrm{QFjAE} \& u r l=h t t p \% 3 \mathrm{~A} \% 2 \mathrm{~F}$
\%2Fciteseerx.ist.psu.edu\%2Fviewdoc\%2Fdownload\%3Fdoi\%3D10.1.1.135.5959\%26rep
\%3Drep1\%26type
\%3Dpdf\&ei=qm9NUOCqIueUiQLyyYDADQ\&usg=AFQjCNH9IgkwabuBn6bgXpQ1yjaxLIVg8g

